
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Efficient Gray-Code-Based Range Encoding Schemes
for Packet Classification in TCAM
Yeim-Kuan Chang, Cheng-Chien Su, Yung-Chieh Lin, and Sun-Yuan Hsieh

Abstract—An efficient ternary content addressable
memory (TCAM) encoding scheme using a binary reflected Gray
code (BRGC) and the concept of elementary intervals is presented
for efficiently storing arbitrary ranges in TCAM. The proposed
layered BRGC range encoding scheme (L-BRGC) groups ranges
into BRGC range sets in which each range can be encoded into a
single ternary vector. The results of experiments performed on
real-life and synthesized rule tables show that L-BRGC consumes
less TCAM than all the existing range encoding schemes for all
rule tables, except that the direct conversion scheme (EIGC) using
elementary intervals and BRGC codes performs best for a small
real-life ACL rule table.

Index Terms—Elementary intervals, Gray code, packet classifi-
cation, ternary content addressable memory (TCAM).

I. INTRODUCTION

P ACKET classification in Internet routers is needed in a
variety of Internet applications, such as quality of service,

security, and multimedia communications. Packet classification
performs searches over a set of filters (i.e., rules) using multiple
fields of the packet as the search key. Filters define a flow or a
set of flows by specifying the match conditions on the packet
header fields. Typically, five packet header fields are used in
filters: source and destination IP address prefixes, source and
destination transport port ranges, and a single value or wildcard
protocol numbers. Routers resolve the flow for a given packet
by searching the set of filters for the subset of matching filters
against the 5-field values in the packet header.
Packet classification can be implemented in either software

or hardware [6], [9]. Software solutions have the disadvantages
of nondeterministic run times and large memory requirements.
It is a challenge to have a software implementation that meets
the gigabit search speed requirement. In this paper, the focus is
restricted to hardware architectures using ternary content ad-
dressable memory (TCAM). TCAM-based packet classification
is currently a popular hardware solution because: 1) industry
vendors are providing cheaper and faster TCAM products;
2) TCAM architecture is easy to understand and simple to
manage in updating TCAM entries; and 3) TCAM’s perfor-
mance is deterministic (i.e., it takes the same number of cycles

Manuscript received October 21, 2010; revised March 15, 2012; ac-
cepted September 05, 2012; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor P. Crowley.
The authors are with the Department of Computer Science and Information

Engineering, National Cheng Kung University, Tainan 701, Taiwan (e-mail:
ykchang@mail.ncku.edu.tw).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2012.2220566

to complete a search). Despite these advantages, however,
TCAMs suffer from four primary deficiencies: 1) high cost per
bit as compared to other memory technologies; 2) high power
consumption; 3) limited scalability to long input keys; and
4) inefficiency in storing ranges. The cost-to-density-ratio of
TCAM has improved dramatically in recent years. The circuit
designs that reduce the matchline voltage swing, switching
activity, and active matchline capacitance [16] and rule table
partitioning schemes are feasible techniques to reduce TCAM
power consumption. Thus, our focus is on designing range
encoding schemes for efficiently storing ranges in TCAM.
The direct range-to-prefix conversion is a traditional data-

base-independent scheme. This scheme individually converts
each range into multiple prefixes. In the worst case, a 16-bit
range may be converted to 30 prefixes, and thus a single rule
consisting of two 16-bit range fields may require 900 2-D rules
in prefix format by cross-producting the prefixes converted from
the two range fields. SRGE [2] and DIRPE [11] are two other
database-independent encoding schemes. The primary advan-
tage of database-independent schemes is their fast update op-
erations because updating one rule does not affect the others.
However, they suffer from large TCAM consumption.
The database-dependent encoding schemes, which reduce

TCAM consumption by exploiting the dependency among
rules, are hence discussed. The encoding process of one field is
independent of the other fields. Each field value is individually
converted into one or more field ternary vectors. The field
ternary vectors of all field values in a rule are cross-producted
to obtain one or more rule ternary vectors that are finally stored
in the TCAM. The field values in input packet headers must
be translated into intermediate results, which in turn will be
used as search keys in TCAM. The address-to-intermediate
result translation can be implemented by a precomputed direct
map in fast SRAM or by specially designed hardware. The
proposed layered binary reflected Gray code range encoding
scheme (L-BRGC) groups ranges into BRGC range sets that
can be encoded by a minimal number of ternary vectors. An
incremental layer-based range insertion scheme is likewise
developed so that each range can be converted into a single
ternary vector.
The rest of this paper is organized as follows. Problem state-

ment and preliminaries are given in Section II, and related work
is discussed in Section III. The proposed scheme and perfor-
mance results are given in Sections IV and V, respectively. The
paper concludes in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

Before we introduce the terminology we use throughout the
paper, the formal problem statement is given first as follows.

1063-6692/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. (a) Buddy and (b) binary reflected Gray codes in the 3-bit address space.

Given: A set of integer ranges defined on the interval
and an integer .

Find: A function that maps range to a set of
ternary vectors of length and a function that maps each in-
teger in to an -bit vector, such that matches

for any range in that includes (and does not match
ranges that do not include).
Example 1: Given ranges and on

interval [0 7], two solutions may be the following:
1) , ,

, , , ,
, , , ;

2) , , for ,
for , for , and
for .

The first solution uses three 3-bit ternary vectors for each
range. Hence, 18 TCAM bits are required. The second one uses
one 2-bit ternary vector for each range, and thus 4 TCAM bits
are required. Obviously, the second solution is better. In this
paper, we focus on finding functions and such that the
number of TCAM bits required is minimal.
A -bit prefix of length , or

simply , covers addresses to
, where or 1 for

and ’s (wildcards or “don’t care” bits) are appended. If we
allow wildcards to be at arbitrary positions of bit patterns, we
call them ternary vectors to be distinguishable from prefixes.
A -bit range covers addresses from to . For
five-dimensional filters, for source and destination
port range fields, (128) for source and destination IPv4
(IPv6) address prefix fields, and for the protocol field.
Some definitions for two ranges and are
initially given as follows.
Definition 1:
1) and are disjoint if or , i.e., .
One special case is that and are adjacent if
or .

2) and are nested if (and) or (and
), i.e., one is contained within the other or

. One special case is that is weak-nested
by if (and) or (and).

3) and are intersecting if or
, i.e., they are neither disjoint nor nested, or

.
Let be a sequence of -bit binary vectors for .

The reverse or reflected sequence of is denoted as .
We define as the sequence of -bit binary vectors
after prepending a bit to all binary vectors in . For
example, if , ,
and .

A. Buddy Code (BC)

The Buddy code (BC) is defined recursively as
and for to . follows

the sequence of natural numbers 0 to 2 . Given
, can be divided into 2 blocks (called -bit block) of
consecutive 2 codes such that all the 2 codes in a block can
be merged into a prefix. The prefix of length
corresponds to the -bit block of codes to

. Each prefix has only
one Buddy prefix such that and can
be combined into . Fig. 1(a) shows a 3-bit Buddy
code example.

B. BRGC

The BRGC , for , is defined recur-
sively as and
for to . For example, and

as shown in
Fig. 1(b). Gray codes in follow the order of the sequence
of binary numbers: 000, 001, 011, 010, 110, 111, 101, 100.
In general, we can convert a BRGC code to a binary number
directly as follows.
BC to BRGC Conversion:: Let and

be the bitmaps of a BC code and its corre-
sponding BRGC code , respectively. The conversion is
done by setting and XOR , for
to .
Clearly, a BC range covers consecutive addresses to
because . However, this may cause confusion when

we write as a BRGC range. Therefore, the BRGC range
consists of addresses

written as . For example, the BC range [2, 4] consists
of binary numbers 010, 011, and 100, while the BRGC range
[2, 4] consists of binary numbers 011, 010, and 110 (i.e., ,

, and).
Similar to BC, can be divided into 2 -bit blocks of

2 BRGC codes that can be merged into ternary vectors. BRGC
is better than BC in that any two neighboring -bit blocks can
be combined into a single ternary vector. For instance, the BC
range [2, 5] can be merged into two ternary vectors 01 and
10 , while BRGC is better because the BRGC range [2, 5] cor-
responds to binary numbers 011, 010, 110, and 111 that can be
merged into .

C. Elementary Interval (EI)

Let be a set of original ranges in which the default range
covers the whole address space. The set of EIs [5], constructed
from , is for to ,
where is the number of EIs in . must satisfy four condi-
tions: 1) and ; 2)

YKCHANG
矩形

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: EFFICIENT GRAY-CODE-BASED RANGE ENCODING SCHEMES FOR PACKET CLASSIFICATION IN TCAM 3

Fig. 2. Example for elementary intervals.

for to ; 3) all the addresses in are covered
by the same subset of , denoted by ; and 4)

. For example, from the four 5-bit ranges in Fig. 2,

. Six valid EIs are covered by at least one
range other than the default range. The intervals covered only
by the default range [0, 31] are default EIs.

III. RELATED WORK

A range encoding scheme is either database-independent or
-dependent based on whether the process of encoding a range is
independent of other ranges in the database. Database-indepen-
dent schemes are usually fast for update, but they tend to use
more TCAM than the database-dependent ones.

A. Basic Elementary Interval Encoding Scheme (BEIE)

Based on the concept of elementary intervals, each elemen-
tary interval is given a unique identifier (code), and each range
can then be encoded by the identifiers of the EIs covered by
the range. The ranges encoded by the identifiers of the EIs are
called primitive ranges [14]. For example, the BC code assign-
ment can be done by for 0 to 8 in Fig. 2. Thus,
can be encoded as the primitive range [5, 6] because covers

and . Similarly, and are encoded as [1, 1],
[4, 7], and [3, 5], respectively. Since there are nine EIs, 4 bits
are sufficient. By using direct range-to-prefix conversion,
is converted into two prefixes 0101 and 0110; is converted
to 0001; is converted to 01 ; and is converted to 0011
and 010 . Totally, six 4-bit prefixes are needed. In comparison,
the original direct range-to-prefix conversion generates 17 5-bit
prefixes for the same set of ranges.

B. Parallel Packet Classification Encoding Scheme

The parallel packet classification (PPC) encoding
scheme [14] is also based on the concept of elementary
intervals. The only difference between PPC and BEIE is that
PPC only encodes the valid elementary intervals. PPC divides
the primitive ranges into layers. Depending on encoding style,
code assignments in one layer may be: I) independent of;
II) partially dependent on; or III) completely dependent on
code assignment in other layers.
The bitmap intersection scheme [10] that uses one layer per

range is the predecessor of PPC. Each EI is associated with an
-bit identifier as follows. The th bit is set to 1 if the EI is
covered by the range in the th layer; otherwise, it is set to 0.
The range in layer is assigned an -bit ternary vector called
match condition whose th bit is set to 1, and other bits are set
to .
PPC style-I improves bitmap intersection by allowing more

than one disjoint range in a layer. Consequently, the number of
layers required will be equal to the maximum number of ranges
that all overlap one another (i.e., all cover a common address).

The layer consisting of ranges needs bits. PPC
style-II reduces the number of bits needed for each layer by
inspecting the code dependencies among layers. Two ranges at
the same layer can be assigned a common identifier if one is
nested by a range at another layer and the other is not nested by
the same range. PPC style-III further reduces the number of bits
by grouping many layers into a larger one. However, a primitive
range may be represented by more than one match condition.
Recently, a scheme called LIC [3] similar to PPC style-I is

proposed to split ranges between multiple layers containing mu-
tually disjoint ranges. Its goal is to find a way to encode the
ranges in all layers such that the code size is minimal.

C. Direct Range-to-Prefix Conversion

The most straightforward database-independent scheme is
the direct range-to-prefix conversion based on Buddy code.
Each range is converted into a number of prefixes. An effi-
cient algorithm can be found in [4]. In the worst case, range

in the -bit address space is split into
prefixes.

D. Ternary Vector Compaction (Boolean Expression)

Although the technique of combining prefixes into ternary
vectors is useful in some cases, it is impossible to combine two
prefixes of the same length into a single ternary vector when
they come from the set of prefixes converted from a range by the
direct range-to-prefix conversion. For example, the 4-bit range
[1, 14] is converted into 0001, 001 , 01 , 10 , 110 , 1110.
None of the pairs, 0001/1110, 001 /110 , and 01 /10 , can
be combined into a single ternary vector. However, we can view
range [1, 14] as 14 singleton addresses and combine them into
four ternary vectors, 1 , 01, 01 , and 01 , in which the
addresses 0101 and 1010 are used twice, solved by the Boolean
expression minimization technique. In the Boolean expression
minimization, each bit of address space is mapped onto a unique
Boolean variable. A range is expressed as a sum of minterms,
each representing an address in the range. A Karnaugh map
(K-map) technique can then be used to find the minimum sum of
products. For example, based onK-map, theminimized Boolean
expression of the 4-bit range [1, 14] is ,
which is equivalent to . For BRGC
range [1, 14] that consists of all 4-bit addresses except 0000 and
1000 (i.e.,), the minimized Boolean expression of
addresses is , which is equivalent to

.
Notice that Boolean expression minimization is NP-com-

plete. Espresso-II [1], [13] is a fast heuristic algorithm that can
be used in practice. The linear time algorithm [17] can also be
used.

E. Direct Conversion Using EIs and BRGC (EIGC)

As described in Section II, BRGC has the advantage over
the BC in that an -bit block of BRGC codes can be combined
with one of its two neighboring -bit blocks into an -bit
block (a ternary vector). Thus, a database-dependent scheme
called EIGC based on elementary intervals and BRGC can be
developed. For example, the EIs constructed from
and in Fig. 2 are numbered with codes 0–8 in the BRGC
sequence from left to right. Since there are nine codes, a 4-bit
code space is needed. As a result, and are encoded

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. PPC and BRGC encoding shemes. (a) RFC-like encoding + BRGC;
(b) PPC style-II and III + BRGC; (c) PPC style-III + BRGC + virtual endpoint.

by 01 1, 0001, and 01 , respectively, and is encoded by
0010 and 011 .
One minor improvement to reduce the code space is that all

the default EIs can be given the same code. Assume there are
valid EIs, denoted by from left to right. We

simply assign -bit code, , to for
to . Any unused code can be assigned to the default EIs.

Consider the same example in Fig. 2. Three default EIs—E0,
E2, and E8—are assigned the code 0. The code assignments for
the six valid EIs are , ,

, , , and
. Three bits are thus sufficient for the code

space. As a result, range is represented as 11 . Similarly,
is represented as 001, as 10 and , and as 01 and
110, as shown in Fig. 3(a). EIGC may encode each range into
more than one ternary vector.

F. Database-Independent Pre-Encoding (DIRPE)

Another database-independent pre-encoding (DIRPE) is re-
cently proposed in [11]. The basic DIRPE scheme uses 2
ternary values to encode each -bit range into a single ternary
vector. However, the number of required ternary values
is extraordinarily larger than . To reduce the number of

required ternary values, a hierarchical scheme that divides the
address space into chunks was proposed. One drawback is that
more than one ternary vector may be needed to represent a
range. In general, if the number of chunks is set to , the worst-
case number of ternary vectors needed for a range is .

G. Hybrid Scheme

The hybrid schemes divide ranges into two groups. Each
group uses a different encoding scheme. If the ranges are
already in the format of prefix, they need not be encoded and
are put into one group. Some encoding schemes can be applied
to the other ranges. One way to handle these two groups is
to use two separate TCAM search engines, which leave no
interference between these two groups. However, an additional
operation is needed to process the results generated from these
two TCAM search engines. Another way to handle these two
groups is to use only one TCAM search engine. However, wider
TCAM entries will have to be used to store the concatenated
match conditions of both groups. Likewise, the search keys

will also become wider. One example is the range mapping
scheme proposed by Liu [12]. In Liu’s scheme, each frequently
occurring range in one group is encoded by one extra bit based
on the bitmap intersection scheme [10], and the infrequently
occurring ranges in the other group are encoded by the direct
range-to-prefix conversion scheme. Another example used
in the Dynamic Range Encoding Scheme (DRES) proposed
recently can be found in [7].

H. Semantically Equivalent Rule Set

These schemes [8], [15], [20] reduce the number of TCAM
entries by identifying semantically equivalent rule sets. A
number of effective techniques such as trimming rules, ex-
panding rules, merging rules, and adding rules are developed.
However, these techniques achieve higher compression ratios
only in the cases when rules share the same actions.

IV. PROPOSED RANGE ENCODING SCHEME

In this section, a scheme called layered BRGC range en-
coding scheme (L-BRGC) is proposed. L-BRGC groups the
ranges in a range set into layers such that the maximal in-
tersecting range sets found in each layer can be converted to
BRGC range sets with or without adding virtual endpoints,
where virtual endpoint, maximal intersecting range set, and
BRGC range set will be defined later. Then, each BRGC range
set can be easily encoded based on the proposed BRGC code
assignment so that every range can be represented by only one
ternary vector. If all BRGC range sets contain only one range,
L-BRGC is similar to PPC [14]. For easy understanding of the
proposed L-BRGC, how to insert a range is briefly outlined as
follows.
1) Insert the range into layer (starting from the first layer).
2) Construct all the maximal intersecting range sets in layer ,
and for each maximal intersecting range set, , the fol-
lowing operations are performed.
A) If is a BRGC range set, go to step C; else go to

step B.
B) Add a number of virtual endpoints into the elementary

intervals of to make a BRGC range set. If this
operation fails, go to step 3; else go to step C.

C) Perform BRGC code assignments for every range in
such that each range can be represented by a single

ternary vector. If the assignment process fails, go to
step 3.

3) Increment by one. If layer exists, go to step 2. Otherwise,
create a new layer and insert the range in it.

L-BRGC reduces the complexity of the prefix or ternary
vector encoding process by changing the size of the original
address space to the code size of EI identifiers, bits,
where is the number of elementary intervals constructed
from the set of original ranges. L-BRGC represents each range
by only one ternary vector. Overlapped ranges can be put in
the same layer as long as they can all be represented by unique
ternary vectors. A systematic approach will subsequently be
presented. The idea is illustrated by using the ranges in Fig. 2,
and the results are shown in Fig. 3(b). Layer 1 contains ranges

and , which divide the address space into three valid
elementary intervals that can be encoded with 2-bit BRGC
codes 01, 11, and 10, respectively. Layer 2 contains ranges
and and needs only one bit based on PPC style-II. As a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: EFFICIENT GRAY-CODE-BASED RANGE ENCODING SCHEMES FOR PACKET CLASSIFICATION IN TCAM 5

result, only three bits for the code space are needed. The code
assignments of all the seven valid elementary intervals are the
same as PPC style-II, but determining the match conditions of
the ranges needs a little elaboration. is encoded by 1 in
layer 1, and thus its overall match condition is by setting bit
2 to , where bit 2 is underlined. Similarly, is represented as
1. By using the reasoning in PPC style-II, and can be

assigned the same code “1” in layer 2. As a result, and
can be distinguished by bit 1. Thus, is represented as 11 ,
and can be represented as 100 or 10 by giving the unused
code 101 to .
Fig. 3(c) shows another way of assigning BRGC identifiers

to the valid elementary intervals covered by the four ranges in
Fig. 2. All the ranges are put into a single layer. Range ,
which covers four elementary intervals, is taken as an example.
Any of the 2-bit blocks of BRGC codes can be assigned to these
four intervals. Fig. 3(c) shows that codes 110, 111, 101, 100 are
assigned to and , respectively. As a result,
and can be represented by 1 and 1 1, respectively. Since

covers three elementary intervals— and —it is
not possible to combine the codes of these three elementary in-
tervals into one ternary vector by any existing encoding scheme.
Two codes can be assigned to and make consist of four
codes. This is done by assigning the 1-bit block of codes 011
and 010 to because it is the neighboring block of 110 and
111 assigned to and . As a result, can be represented
by a single ternary vector 1 . Finally, the elementary interval
covered by is assigned code 001, and default intervals

are assigned code 000. Since two codes are assigned to , we
say that a virtual endpoint is thus inserted in .
Based on the BRGC assignments done in Fig. 3(c), the four

ranges are divided into two disjoint range sets: One consists of
, and the other consists of and . These two range

sets are denoted by intersecting range sets, the formal definition
of which is as follows.
Definition 2: An intersecting range set is either a single range

or a set of ranges in which any range must intersect at least one
of the other ranges. Let be an intersecting range set found in
a set of ranges . is a maximal intersecting range set in if
there does not exist any other intersecting range set in such
that .
Definition 3: Let and be two maximal inter-

secting range sets found in a range set . and
are said to be disjoint if any range in is disjoint from
any range in is said to be nested by if
all the ranges in are completely contained in one of the
elementary intervals constructed from .
Consider the ranges , , , and in Fig. 2 and

two additional ranges and .
Ranges and are covered by , , and simul-
taneously. In addition to the maximal intersecting range set

, the second maximal intersecting
range set is formed because neither
nor intersects with any range in . is disjoint from
all other ranges, and thus is the third maximal
intersecting range set in . Notice that any two maximal inter-
secting range sets found in a range set can be either disjoint or
nested, and they cannot be intersecting.
We denote the left and right EIs of by and , re-

spectively. We say that range is half-cut by range in if

Fig. 4. Proof of Lemma 1.

, and thus . Two ranges and
in are said to be half-cutting if one is half-cut by the other.
Specifically, we say that is right half-cut by if the addresses
covered by are contained in the right half of and is
left half-cut by if the addresses covered by are con-
tained in the left half of .
Definition 4: A BRGC range set is defined to be the inter-

secting range set that satisfies the following constraints: 1) The
number of elementary intervals contained in each range must be
a power of two. 2) For any two ranges and that are inter-
sected in the set, they must be half-cutting.
The first constraint is required for a range to be represented

by one ternary vector because the only possible case to merge
single-value addresses into a ternary vector is that is a power
of two. The second constraint implies that we can find a way
to assign codes to the EIs covered by two half-cutting ranges
and such that both and can be represented by on one
ternary vector, as explained by the following example. Consider
two half-cutting ranges and that contain 2 and 2 EIs, re-
spectively. Let , and thus half-cuts . Range can
be assigned a -bit block of BRGC codes. Let the rightmost

-bit block of BRGC codes inside be and the
right neighboring -bit block of outside of be

. We can assign and to range . Thus,
both ranges can be represented with one only ternary vector
individually.
Subsequently, we shall first give some useful properties of

BRGC range sets and present the proposed layered BRGC range
encoding scheme later.
Lemma 1: Let ranges , , and belong to a BRGC range

set. If both and intersect , ranges and must not be
intersected.

Proof: If and are intersected, then the following in-
equality must be true:

(1)

Now, there are three cases to prove: I) ;
II) ; and III)

. The proof can be referred to Fig. 4. In case I),
implies two subcases: Ia) and

are adjacent; and Ib) and are weak-nested, which lead
to and , respectively.
This is a contradiction to inequality (1). In case II), two pos-
sible subcases are: IIa) both and are left half-cut or right
half-cut by ; and IIb) one is left half-cut by and the other
is right half-cut by . In subcase IIa), and are nested, and
thus ; in subcase IIb), and are
disjoint, and thus . This is a contradiction.
In case III), without loss of generality, we assume

. Since and are intersected, one may have two
subcases: is left half-cut by and right half-cut by . Now,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

we consider the former, while the latter can be discussed sym-
metrically. Since , we may have two subcases: IIIa)
is left half-cut by ; and IIIb) is right half-cut by . Sub-
case IIIa) leads to , and subcase IIIb) leads to

, which contradict inequality (1). Thus,
and are not intersected for all these three cases.
Based on Lemma 1, if a range in a BRGC range set is half-cut

by two different ranges, then these two ranges must be adjacent
or weak-nested. Subsequently, we temporarily focus on the spe-
cial condition in which any two ranges in a BRGC range set are
not adjacent.
Lemma 2: Let ranges to belong to a BRGC range set

in which any two ranges are neither adjacent nor weak-nested.
If and are half-cutting for , then
must not be half-cut by any of the ranges , and

.
Proof: Assume range is a range that contains the largest

number of elementary intervals among all ranges. As a result,
both ranges and are half-cut by and in turn
and are half-covered by and , respectively, and
so on. Assume the number of elementary intervals contained in
is 2 . Since no ranges are adjacent or weak-nested, either
and may have the same number of elementary inter-

vals as , but not both. Also, we must have
for , i.e., .
Otherwise, if , then will be half-cut
by both and , which implies that and

are adjacent or weak-nested (by Lemma 1), which con-
tradicts the assumption. Similarly, we can prove that

for . Hence, .
Without loss of generality, we assume that and

for . If and for
are half-cutting, then is half-cut

by because . This would imply that is
half-cut by both and . Then, by Lemma 1,
and are adjacent or weak-nested, which contradicts the
assumption. Therefore, is not half-cut by any range in

. Next, we show that and
any range in are also not half-cut-
ting. Suppose, by contradiction, that and any range

are half-cutting. Then, must
be half-cut by because . However, since is also
half-cut by , then according to Lemma 1, this would lead
to a contradiction. Thus, the lemma follows.
Theorem 1: Each range in a BRGC range set can be repre-

sented by a unique ternary vector provided that any two ranges
in are neither adjacent nor weak-nested.

Proof: The theorem is proved by construction as follows.
We first select the maximal range that contains the max-
imal number of elementary intervals among all the ranges in the
BRGC range set. Tie is broken randomly.We can easily assign a
block of BRGC codes to . Based on Lemmas 1 and 2, we can
find a set of ranges , and such that half-cuts

for to , i.e., , where
is 2 . As a result, can be assigned a -bit block of

BRGC codes after is given the needed -bit block of BRGC
codes. Thus, the theorem follows.
Theorem 2: Each range in a BRGC range set can be repre-

sented by a unique ternary vector, provided that any two ranges
in are not adjacent.

Fig. 5. Proof of Theorem 3.

Proof: We have the following two cases: 1) Any two
ranges are not aligned; and 2) there exist two weak-nested
ranges and in . By Theorem 1, case 1 immediately holds.
For case 2, the proof is by induction on the number of

ranges in . Without loss of generality, we assume is left
weak-nested by . Two base cases for clearly hold be-
cause consisting of only one EI can be assigned code 00 and
consisting of two EIs can be assigned codes 00 and 01. As-

sume that the result holds when . Now, we consider the
case where . We can temporarily remove range
from . If one of the ’s rightmost and leftmost EI is not shared
with other ranges, this EI will also be removed from the BRGC
range set. Removing an EI from may invalidate the two con-
straints of BRGC range set for some ranges. However, we can
add this EI back by using a virtual point so that all the ranges
(excluding) in still satisfy the two constraints. By the in-
duction hypothesis, all the ranges except can be represented
by unique ternary vectors. Now, if we add back into , all
ranges will not violate the constraints of the BRGC range set.
Moreover, since for and and share
the same rightmost and leftmost EI, it can also be assigned a
block of BRGC codes that is the rightmost or leftmost subblock
of the BRGC codes assigned to . By the property of BRGC,
the codes assigned to can be represented by a unique ternary
vector. Hence, the theorem follows.
Theorem 3: It is not always possible that every range in a

BRGC range set can be represented by a unique ternary vector,
provided that if two ranges in the set are adjacent.

Proof: We prove it by contradiction. The example in Fig. 5
shows that both ranges and cannot be given a block of
BRGC codes simultaneously. Thus, the theorem follows.
Definition 5: A BRGC range set is called perfect BRGC

range set if it covers 2 valid elementary intervals that need
2 distinct codes.
If a perfect BRGC range set is the only range set in a layer, a
-bit code space is sufficient for the layer, and the unused code
is assigned to the default elementary intervals. As a result, all 2
-bit codes are used, and no code is wasted. We show the per-
fect BRGC range sets consisting of two, four, and eight ranges
in Fig. 6. For example, Fig. 6(a) shows that the two ranges
cover three valid elementary intervals that are assigned with the
BRGC codes 01, 11, and 10. The code 00 is assigned to the two
default elementary intervals. As a result, these two ranges can be
represented with two 2-bit match conditions, 1 and 1. The per-
fect BRGC range sets of four or more ranges can be constructed
recursively. For example, the BRGC range set in Fig. 6(b) is
constructed from Fig. 6(a) by adding two ranges shown in red. A
BRGC range sets in Fig. 6(c) is constructed from 6(b) by adding
four dark blue ranges that half-cut the black ranges at the black
endpoints. In general, we can construct a perfect BRGC range
set that consists of 2 ranges covering 2 valid elemen-
tary intervals, and thus an -bit code space is needed. We
denote these perfect BRGC range sets that contain 2 ranges
by . If is organized into layers by PPC

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: EFFICIENT GRAY-CODE-BASED RANGE ENCODING SCHEMES FOR PACKET CLASSIFICATION IN TCAM 7

Fig. 6. Perfect BRGC range sets of 2 ranges, . (a) ;
(b) (code 000 is unused); (c) (code 0001 is unused).

Fig. 7. Code assignment for a single BRGC range set.

style-I, layers are needed. Notice that any two ranges in
are not adjacent and weak-nested. There are many

other possible perfect BRGC range groups when two ranges in
the set are adjacent or weak-nested.
Checking whether or not an intersecting range set I is a BRGC

range set is implemented in function
by examining the two constraints in Definition 3. Parameter
is the EI array constructed from I, and parameter out-
puts the number of ranges that do not satisfy the first constraint.
There are at most EIs constructed for the endpoints of
ranges in I, and thus time is needed for constructing

the EI array. Checking constraint 1 for all ranges takes
time. Checking constraint 2 for all pairs of ranges in I
takes time. As a result, can
be performed in time.
Fig. 7 shows the function that

encodes the ranges in a BRGC range set . As in lines 2 and 3,
the maximal range in covering the maximum number
of EIs is first located. Line 4 computes the code size needed for
. In line 5, a -bit BRGC block is assigned to all the EIs con-

tained in by aligning the leftmost EI of range to code 0.
Since it is not guaranteed that all the ranges can be represented
by single ternary vectors stated in Theorem 3, lines 6 and 7 per-
form the check. Since there are EIs for ranges, the time
complexity of is .

Fig. 8. Virtual endpoint insertion.

Subsequently, a virtual endpoint insertion algorithm is devel-
oped to convert a non-BRGC range set to a BRGC range set by
inserting some virtual endpoints. For example, Fig. 3(c) shows
that ranges , , and do not form a BRGC range set be-
cause the number of elementary intervals contained in is not
a power of 2. By adding one virtual endpoint into elementary
interval in Fig. 3(c), will cover four elementary intervals
assigned four BRGC codes and thus can be represented by the
ternary vector 1 .
Fig. 8 shows the function

that implements the
virtual endpoint insertion process recursively. This function,
initially called , tries to
add virtual endpoints to the EI array . A global variable
success is used, if set to true, to stop the recursive virtual
endpoint insertion process when a range set is successfully
confirmed to be a BRGC range set after some virtual endpoints
are inserted. Virtual endpoints can be added in any of the
elementary intervals. The fourth parameter is decremented
by one every time the function is called recursively, as shown
in line 11. When reaches zero in line 1, the process
of adding virtual endpoints is completed. Functions

and
are then used to check if the given range set is a BRGC
range set. The worst-case time complexity of the

is because
each endpoint can be inserted into any of the elementary
intervals, and takes time.
Inserting too many virtual endpoints (i.e., a large) is very

time-consuming. It is also difficult to determine the minimum
number of virtual endpoints needed to be inserted in order to
convert a non-BRGC range set to a BRGC range set. Therefore,
the following virtual endpoint assignment scheme is used with
caution. For a range set, if there are ranges that do not sat-
isfy constrain 1, virtual endpoints are inserted, where

is returned from and is a
predetermined value. In this paper, we set to 1. We start exe-
cuting by setting

. If the range set can be converted to a BRGC
range set, then the process stops. Otherwise, this process is re-
peated by decrementing by one in next round until .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. Incrementally insert a range into layers.

To deal with the situation when an intersecting range set is
not a BRGC range set or when converting a non-BRGC range
set to a BRGC range set by adding virtual endpoints fails, an
incremental range insertion scheme to assign codes in a layered
fashion is proposed. This scheme adds the ranges of an inter-
secting range set into layers, one at a time, as shown in the
self-explanatory function
of Fig. 9. After the successful incremental insertion process, the
codes assigned to all maximal intersecting range sets in each
layer can be combined into the complete ternary vectors for all
the ranges. Before the details of the code-combining process
are given, we first show an example in Fig. 10. Two layers are
assumed to be generated. Layer 1 contains five BRGC sets in
which nests the other four BRGC sets, and layer 2 contains
three disjoint BRGC sets, , , and . Fig. 10 also shows
the BRGC codes assigned to these eight BRGC range sets
by the code assignment schemes, which will be subsequently
described.
The code assignment for the BRGC sets in a layer is de-

scribed here. Two BRGC sets in the same layer can be disjoint
or nested. For example, Fig. 11 illustrates that sets to in
layer 1 are nested by , and sets , , and in layer 2
are disjoint. The method of assigning codes to disjoint BRGC
range sets is first described. As aforementioned, when assigning
codes to many disjoint BRGC range sets, the total number of
bits required cannot be determined until the number of codes
each BRGC range set needs is determined. The code assign-
ments for the disjoint BRGC range sets in the same layer can be
performed independently or dependently, as in PPC encoding
schemes [14]. It can be recalled that the main step in Fig. 7 in as-
signing codes to a BRGC range set is the alignment of the max-
imal range of size 2 to two consecutive unused -bit
blocks of BRGC codes. There is only one default EI for all these
BRGC range sets in a layer, and thus we only have to arbitrarily
find an unused code for the default EI at the last step.
To minimize the code size needed for a group of

disjoint BRGC range sets, , in a
layer, the code assignment is implemented in function

of Fig. 11. is the EI array
of and the number of elementary intervals covered by is

. Each elementary interval of may also nest a number

of disjoint BRGC range sets. In line 1 of Fig. 11, function
shown in Fig. 12 is

first executed to combine the codes assigned to the BRGC
range sets nested by and to obtain the number of extra i
bits needed in , where . In line 2,
all BRGC range sets in S are sorted according to their sizes

in the nonincreasing order. Code assignment starts
from the largest set and ends in the smallest set . In
lines 3 and 4, a -bit block of codes
is allocated initially. In lines 5–12, a loop is started to assign
codes to by finding a series of unused codes for elementary
intervals of so that the maximal range in can be
aligned to a -bit block of -bit BRGC codes, where

contains 2 elementary intervals. Initially, we allocate
a -bit code space (i.e., a -bit BRGC block) and assign

codes to . Next, from the unused codes (called an
address hole) in the allocated -bit code space, we try to search
a series of unused codes so that the maximal range
of is exactly aligned to a -bit block. If the search
process fails, the size of the allocated -bit block will have
to be doubled to accommodate (i.e., one more bit is used
for the code space) and prepend a bit 0 to the codes already
assigned to . The codes are continuously assigned this way
until all BRGC range sets are exhausted. In general, when
assigning codes to , the holes inside the -bit code block
already allocated are sought for a series of unused
codes that can be aligned to the maximal range of . Finally,
an unused code should be found for the default elementary
interval. If there is no unused code available, one more bit has
to be used for the code space of the layer.
For example, consider the two disjoint BRGC sets and
in Fig. 10. Since is larger than , codes 01, 11, and 10

are first assigned to the three elementary intervals of . is
then assigned the only remaining code 00. However, one more
code is needed for the default interval. Therefore, the code space
has to be increased by one bit, which results in appending all
the four 2-bit codes with a bit 0 and arbitrarily assigning one
of the remaining codes—100, 101, 110, or 111—to the default
elementary interval.
The method of assigning codes to the disjoint BRGC range

sets nested by another BRGC range set is subsequently dis-
cussed. If two BRGC range sets and are contained in two
distinct elementary intervals and of another BRGC range
set , respectively, and must be assigned the same code
size because the match condition of any range in must be rep-
resented by a single ternary vector. The resulting code size re-
quired for range sets , , and will be ,
where denotes the code size of a BRGC range set

. Let the match condition of a range computed
onlywith the ranges in be . The resultingmatch con-
dition of computed with all the ranges in , , and will
be prepended with “don’t care” bits.
Let the match condition of a range computed only with the
ranges in be . The resulting match condition of
computed with all the ranges in , , and will be
appended with the code assigned to the elementary interval .
For example, the two disjoint BRGC range sets, and , can
be assigned the same codes as that of and . When the code
assignment process in Fig. 11 is executed for the two disjoint
range sets and , ranges and get the codes 00 and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: EFFICIENT GRAY-CODE-BASED RANGE ENCODING SCHEMES FOR PACKET CLASSIFICATION IN TCAM 9

Fig. 10. Two layers of BRGC sets constructed from an intersecting range set of 14 ranges.

Fig. 11. Code assignment for disjoint BRGC range sets.

01, respectively, and the default elementary interval gets either
10 or 11. To make and have the same code size as and
, the codes assigned to and are prepended with a bit 0,

and thus their codes become 000 and 001. The default elemen-
tary interval will get any one of the remaining unused codes.

shown in Fig. 12 is a
recursive function that implements the code assignment for a
BRGC range set nesting some other disjoint BRGC sets. If an
elementary interval contains a group of disjoint BRGC range
sets, function of Fig. 11
is used recursively to complete the required task. The main
purpose is to obtain the maximum number of nested bits called

for all BRGC range sets nested by .
Lines 2–5 compute needed among all the
EIs in . Lines 6–12 perform the following tasks for each

. Since all the EIs contained in can share the code
space of the same size (bits), all the codes

Fig. 12. Code assignment for nested BRGC range sets.

assigned to the BRGC range sets (denoted by) nested
by are appended with — 0’s and
prepended with .code. We then select one unused code
(-bit) as the code for default EI inside
and assign it to .code. For example, the BRGC range sets
nested by are , , , and . The maximum number of
nested bits will be 3 bits. The final results
of the match conditions of all ranges are shown in Fig. 10.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed BRGC-based
encoding schemes is evaluated and compared to existing ones.
It has been assumed that the search key translation process (in-
termediate result computation) is implemented by a fast SRAM
that stores 65 536 precomputed search keys for all possible
65 536 16-bit source or destination port values. We first give
the performance analysis and compare it with PPC style-I to
show that L-BRGC is superior, especially when the number of
ranges to be encoded is scaled to a large number. Then, we give
the experimental results based on real-world rule sets.
The main difference between L-BRGC and PPC style-I is that

L-BRGC puts disjoint BRGC range sets or the ones nested by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 13. L-BRGC encoding example for the ranges equally distributed among two layers.

TABLE I
NUMBERS OF BITS NEEDED FOR A PERFECT BRGC RANGE SET ENCODED BY

L-BRGC AND PPC STYLE-I

one of the elementary intervals of these disjoint BRGC range
sets into the same layer. As proposed in Section IV, every time a
range (say) is to be inserted, L-BRGC tries to find an existing
layer such that can be combined with one or more existing
BRGC range sets to form a larger BRGC range set by adding
some virtual endpoints if needed. If all the ranges are disjoint
(i.e., only one layer is needed in PPC style-I), each BRGC range
set can only contain one range, L-BRGC is degenerated into
PPC style-I. However, overlapping and intersecting ranges do
exist in range fields of the real-world rule sets and the number of
layers needed in terms of PPC style-I is a small constant. Thus, it
is highly possible that overlapping and intersecting ranges can
form BRGC range sets that can be put in the same layer and
the number of bits will be reduced compared to PPC style-I.
Subsequently, we shall compare the numbers of bits needed for
L-BRGC and PPC style-I by assuming there are ranges that
need layers encoded by PPC style-I.
We first consider the best case scenario for L-BRGC

in which all the ranges can be grouped as the only per-
fect BRGC range set, e.g., , as described in
Section IV. For a range set, only bits are
needed for L-BRGC. If the ranges in are orga-
nized by PPC style-I, layers are required and thus at least

bits are needed for PPC
style-I. Since the order in which ranges are inserted influences
how to select a layer to put the ranges to be inserted in PPC
style-I, we compute the numbers of bits needed in
for 1 to 6 and compare them to PPC style-I in Table I. We
can see that when , L-BRGC needs at most half of the
number of bits needed in PPC style-I.
Second, we consider another best scenario for L-BRGC

in which ranges can be grouped into disjoint
range sets. Therefore, each set takes

2 codes, and L-BRGC needs bits
computed as follows:

Third, we show the worst-case scenario for both L-BRGC and
PPC style-I. As shown in [14], the number of bits denoted by

for PPC style-I to encode a set of ranges
is maximized when all ranges are distributed equally among
layers. can be computed as follows:

For L-BRGC, we shall show that L-BRGC only needs no
more than a half number of bits needed in PPC style-I for the
ranges that equally distributed among layers. Consider
first. The most complicated condition is that all ranges are inter-
secting in a chain fashion as shown in Fig. 13 for .
Fig. 13 shows the range distribution encoded by L-BRGC.

For L-BRGC, the code assignment to all 41 elementary intervals
and the final ternary vectors given to all ranges are clearly shown
in Fig. 13. Two thirds of the ranges (14 ranges) form seven dis-
joint range sets that can be put in layer 1. These dis-
joint range sets can be assigned codes easily based
on the proposed encoding scheme. Totally, 4 7 codes are re-
quired, and thus a 5-bit code space is needed in layer 1, where
these seven 2-bit code subspaces are assigned based on binary
reflected Gray code. For the six remaining ranges that are put
in layer 2, we can use the PPC style-II to reduce the size of the
code space needed. Two neighboring ranges (e.g., A1 and B2)
are given different codes, and thus two codes (01 and 11) plus
the code (00) for default elementary intervals are needed. Thus,
7-bit code space is needed for L-BRGC. If the ranges in Fig. 13
are organized by PPC style-I, two layers are also needed. Each
layer takes 10 ranges. As a result, 8-bit code space is needed.
This example can be generalized to ranges, and the number
of bits needed for L-BRGC denoted by
is computed as follows:

Now, consider the case when . Each layer contains
ranges. We take two layers at a time and encode them by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: EFFICIENT GRAY-CODE-BASED RANGE ENCODING SCHEMES FOR PACKET CLASSIFICATION IN TCAM 11

TABLE II
PERFORMANCE OF REAL-LIFE RULE TABLES

the same encoding process described above. As a result, the total
number of bits needed in the code space is

Assume all ranges are equally distributed over layers
and is a small constant. PPC style-I needs bits
while L-BRGC only needs bits. Asymptotically,
L-BRGC needs a half of the number of bits needed in PPC
style-I. Notice that it is possible to encode the ranges equally
distributed over layers more efficiently by considering three
or more layers at a time, instead of only two layers.
Now, we show the experimental results based on three real-

life rule tables and some large synthesized rule tables generated
by ClassBench [18] that were used in the experiments. Real-life
rule tables that reflect the current status of the rule tables used
today consist of at most a few hundreds of unique ranges in the
source and destination port fields. Only the source and destina-
tion ports of these rule tables were extracted and evaluated in
the experiments based on the storage requirements in SRAM
and TCAM. The results were given in terms of expansion fac-
tors, defined to be the ratio of the number of expanded rules by
some range encoding scheme to the number of original rules.
The evaluated schemes include the direct range-to-prefix

conversion (DC), the direct range-to-ternary-vector conversion
using Gray code (SRGE) [2], the elementary interval-based
scheme using Buddy code (EIDC), the proposed elementary in-
terval-based scheme using binary reflected Gray code (EIGC),

the database-independent range pre-encoding (DIRPE) [11], the
bitmap intersection scheme (Bitmap) [10], PPC style-II or III
that performs the best (PPC) [14], and the proposed L-BRGC
scheme. As suggested in [11], DIRPE uses the strides of 2, 2,
3, 3, 3, 3 and 2, 2, 2, 2, 2, 3, 3 for the source and destination
port fields, respectively. Thus, TCAM entry widths of source
and destination port fields are 34 and 29 bits, respectively.
Table II shows the performance results for three real-life rule

tables. Since many original rules called prefix rules whose port
values in both their source and destination fields are already pre-
fixes, they can be stored in TCAM directly without the need of
any encoding scheme. The performance on the nonprefix rules
has a primary impact on the overall performance. Therefore,
experiments on the nonprefix rules were also conducted. The
TCAM size in kilobits (kb) is calculated by (number of TCAM
Entries sum of source and destination port entry sizes)/1024.
The SRAM size in kilobytes (kB) is calculated by

.
From the results of the Bitmap scheme, the entry sizes indi-
cate the number of distinct ranges in the source and destination
address fields. For example, the entry size of Bitmap scheme
is one for table because has only one distinct range
value in the source address field, which is 0–65 535. The per-
formance difference between DC and SRGE and between EIDC
and EIGC is small. L-BRGC outperforms the other schemes for
tables and . However, for , EIGC performs the
best. After a detailed analysis on the range field values in ,
we found that the source address field contains only the wildcard
field value (0–65535), and the destination address fields of the
nonprefix rules consist of two completely nested range sets. The
proposed L-BRGC scheme performs poorly for the completely

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 14. TCAM cost (kb) comparisons for synthesized rule tables. (a) All rules. (b) Nonprefix rules.

nested range sets. Therefore, L-BRGC needs almost as many
bits as the bitmap scheme for each TCAM entry. It turns out that
the TCAM requirements for L-BRGC and Bitmap are equally
larger than those for other schemes. On the other hand, EIGC is
better than SRGE in that the ranges in EIGC encoded with the
elementary intervals are converted to a less number of prefixes
than their original ranges in SRGE. Thus, EIGC consumes less
TCAM than other schemes. Also, if all rules are considered for
table , EIDC and EIGC consume the most TCAM because
their expansion factor is so large, which is around 13.
The same experiments were also conducted for the synthe-

sized rule tables of 1000, 5000, and 10 000 rules generated by
ClassBench [18]. However, because space is limited, only the
detailed results for 5000 rules are shown in Table III; the TCAM
requirements are summarized in Fig. 14, where the results of
DC, SRGC, and DIRPE are removed for nonprefix rules to show
the differences between PPC and L-BRGC. It is apparent that
PPC and the proposed L-BRGC scheme consume less TCAM
than other schemes for all , , and tables. Likewise,
L-BRGC needs only 50%–77% of the TCAM required in PPC.
In addition, L-BRGC needs at most 128 kB of SRAM when the
direct IP address to key translation array is used. The size of
SRAM needed for all database dependent schemes does not in-
crease much as the size of rule tables increases.
The above experimental results demonstrate a general idea

of how much TCAM a range encoding scheme requires. How-
ever, in practice, there may not exist a TCAM that is as wide as
the rule entry size needed by a large rule table for some range
encoding scheme. Therefore, the hybrid schemes such as Liu’s
scheme [12] and DRES [7] are proposed to efficiently utilize
the extra bits that are left unused if the original range-to-prefix
conversion is used. In the experiments, we use DRES as the
basic scheme to study performance impacts of the proposed
L-BRGC, PPC, and bitmap schemes. In other words, from the
original range sets, we select some ranges that are heavier than
other ranges, where range is said to be heavier than another
range if the number of prefixes converted from is larger
than that converted from based on the direct range-to-prefix
conversion. The number of selected ranges are then encoded by
scheme L-BRGC, PPC, or bitmap. If there are extra bits, only

heavy ranges can be selected for being encoded by bitmap.
Since L-BRGC and PPC have a higher encoding efficiency than
bitmap, they can select more than heavy ranges. Also, as usual,
the direct range-to-prefix conversion is used for the ranges that
are not selected. As a result, a fixed number of 32 bits is needed
for two port ranges when the direct range-to-prefix conversion
is used. The range selection algorithm proposed in [7] is imple-
mented to obtain better encoding gain. We use three different
sizes of extra bits, 8, 24, and 40 bits.
The performance results of TCAM entry sizes, number of

TCAM entries, TCAM sizes, and expansion factor are reported
for the real-life tables and synthesized tables of 5000 rules. We
first consider the results of tables shown in Table IV. The
source port field needs no extra bit because only one source
port field value of “ ” exists in tables. For the real-life table

, the number of nonprefix destination port field values is
much greater than 40. Therefore, all the extra bits are used for
encoding the destination port field that needs 24, 40, and 56 bits
when 8, 24, and 40 extra bits are available, respectively. As
shown in Table IV, L-BRGC has better performance gains in
terms of TCAM usage and expansion factor (EF) than bitmap
and PPC. For the large synthesized table , only 7 extra
bits (i.e., 23 bits in total) are sufficient to encode all the non-
prefix ranges of destination port field by L-BRGC. However, 12
and 33 bits are sufficient for schemes bitmap and PPC, respec-
tively. For and tables, eight extra bits are sufficient
for all three schemes to obtain the expansion factor of 1.0. In
other words, more extra bits do not obtain better performance
for and . Thus, the results for 24 and 40 extra bits are
not shown in Tables V and VI. For IPC tables, L-BRGC per-
forms a little better than PPC and bitmap, while all these three
schemes have the same performance forFirewall tables. In sum-
mary, the performance improvement of L-BRGC over bitmap
and PPC in terms of TCAM usage increases as the number of
nonprefix source or destination port field values increases.
Now, we shall show the preprocessing time and incremental

update times of the proposed L-BRGC that are compared to
the existing schemes in Tables VII and VIII. We use the three
real-world rule sets for computing the preprocessing times and
synthesized rule tables of 5000 rules for incremental insertion

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: EFFICIENT GRAY-CODE-BASED RANGE ENCODING SCHEMES FOR PACKET CLASSIFICATION IN TCAM 13

TABLE III
PERFORMANCE OF 5000 RULE TABLES

TABLE IV
PERFORMANCE OF RULE TABLES

TABLE V
PERFORMANCE OF RULE TABLES

times. The testing program is written in C running on a PC with
an Intel i3-540 CPU (3.06 GHz). We can see that L-BRGC takes
a longer time to preprocess and insert ranges because BRGC
range sets have to be calculated for reducing the required code
space. L-BRGC’s preprocessing and update performance is ac-
ceptable because the rule table changes do not occur frequently.
Also, the CoPTUA scheme proposed in [19] that does not lock

TABLE VI
PERFORMANCE OF RULE TABLES

TCAM during the updating process can be used to alleviate the
impact of slow encoding process.

VI. CONCLUSION

In this paper, binary reflected Gray codes and the concept
of elementary intervals are used to design a memory-efficient

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE VII
PREPROCESSING TIME (MILLISECONDS)

TABLE VIII
INCREMENTAL INSERTION TIME (MILLISECONDS)

TCAM encoding scheme. From the performance results exper-
imented on real-life rule tables, the proposed L-BRGC scheme
gives the best performance for and tables, and the pro-
posed EIGC scheme performs the best for the table. From
the performance results of experiments on larger synthesized
rule tables, the proposed L-BRGC scheme performs the best for
all , , and tables. From the experimental results
based on DRES scheme, the proposed L-BRGC scheme also
performs better than PPC and bitmap schemes.

REFERENCES

[1] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis. Norwell, MA:
Kluwer, 1984.

[2] A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based clas-
sification using gray coding,” in Proc. IEEE INFOCOM, 2007, pp.
1388–1396.

[3] A. Bremler-Barr, D. Hay, and D. Hendler, “Layered interval codes
for TCAM-based classification,” in Proc. IEEE INFOCOM, 2009, pp.
1305–1313.

[4] A. L. Buchsbaum, G. S. Fowler, B. Krishnamurthy, K.-P. Vo, and J.
Wang, “Fast prefix matching of bounded strings,” J. Exp. Algor., vol.
8, pp. 1–17, 2003, Article No. 1.3.

[5] Y.-K. Chang and Y.-C. Lin, “Dynamic segment trees for ranges and
prefixes,” IEEE Trans. Comput., vol. 56, no. 6, pp. 769–784, Jun. 2007.

[6] H. J. Chao, “Next generation routers,” Proc. IEEE, vol. 90, no. 9, pp.
1518–1558, Sep. 2002.

[7] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic range en-
coding scheme for TCAM coprocessors,” IEEE Trans. Comput., vol.
57, no. 7, pp. 902–915, Jul. 2008.

[8] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary CAMs can be smaller,” in Proc. ACM SIGMET-
RICS, 2006, pp. 311–322.

[9] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
Comput. Commun. Rev., vol. 29, no. 4, pp. 147–160, 1999.

[10] T. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” Comput.
Commun. Rev., vol. 28, no. 4, pp. 203–214, 1998.

[11] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algo-
rithms for advanced packet classification with ternary CAMs,” in Proc.
ACM SIGCOMM, 2005, pp. 193–204.

[12] H. Liu, “Efficient mapping of range classifier into ternary-CAM,” in
Proc. IEEE Symp. High Perform. Interconnects, 2002, pp. 95–100.

[13] H. Liu, “Routing table compaction in ternary CAM,” IEEE Micro, vol.
22, no. 1, pp. 58–64, Jan.–Feb. 2002.

[14] J. Lunteren and T. Engbersen, “Fast and scalable packet classification,”
IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 560–571, May 2003.

[15] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM Razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” in Proc.
IEEE ICNP, 2007, pp. 266–275.

[16] N.Mohan andM. Sachdev, “Low power dual matchline ternary content
addressable memory,” in Proc. IEEE ISCAS, 2004, vol. 2, pp. 633–636.

[17] B. Schieber, D. Geist, and A. Zaks, “Computing the minimum DNF
representation of boolean functions defined by intervals,” Discrete
Appl. Math., vol. 149, no. 1–3, pp. 154–173, Aug. 2005.

[18] D. Taylor and J. Turner, “ClassBench: A packet classification bench-
mark,” in Proc. IEEE INFOCOM, 2005, vol. 3, pp. 2068–2079.

[19] Z. Wang, H. Che, M. Kumar, and S. K. Das, “CoPTUA: Consistent
policy table update algorithm for TCAM without locking,” IEEE
Trans. Comput., vol. 53, no. 12, pp. 1602–1614, Dec. 2004.

[20] F. Yu and R. H. Katz, “Efficient multi-match packet classification with
TCAM,” in Proc. IEEE Symp. High Perform. Interconnects, 2004, pp.
28–34.

Yeim-Kuan Chang received the Ph.D. degree in
computer science from Texas A&M University,
College Station, in 1995.
He is currently a Professor with the Department of

Computer Science and Information Engineering, Na-
tional Cheng Kung University, Taiwan. His research
interests include Internet router design, computer ar-
chitecture, and multiprocessor systems.

Cheng-Chien Su received the M.S. and Ph.D.
degrees in computer science and information en-
gineering from National Cheng Kung University,
Taiwan, in 2005 and 2011, respectively.
His research interests include high-speed packet

processing in hardware and deep packet inspection
architectures.

Yung-Chieh Lin received the M.S. degree in
computer science and information engineering
from National Cheng Kung University, Taiwan, in
2005, and is currently pursuing the Ph.D. degree in
computer science and information engineering at
National Cheng Kung University.
His current research interests include high-speed

networks and high-performance Internet router
design.

Sun-Yuan Hsieh received the Ph.D. degree in
computer science from National Taiwan University,
Taipei, Taiwan, in 1998.
From August 2000 to January 2002, he was an

Assistant Professor with the Department of Com-
puter Science and Information Engineering, National
Chi Nan University, Taiwan. In February 2002, he
joined the Department of Computer Science and
Information Engineering, National Cheng Kung
University, Taiwan, where he is now a Distinguished
Professor. His current research interests include

design and analysis of algorithms, fault-tolerant computing, bioinformatics,
parallel and distributed computing, and algorithmic graph theory.

